Copied to
clipboard

G = C15×C8⋊C22order 480 = 25·3·5

Direct product of C15 and C8⋊C22

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C15×C8⋊C22, D82C30, SD161C30, C60.248D4, C12034C22, M4(2)⋊1C30, C60.296C23, C8⋊(C2×C30), C407(C2×C6), (C5×D8)⋊6C6, C246(C2×C10), C4○D44C30, (C2×D4)⋊5C30, D42(C2×C30), (C3×D8)⋊6C10, Q83(C2×C30), (D4×C10)⋊14C6, (C6×D4)⋊14C10, (C15×D8)⋊14C2, (D4×C30)⋊32C2, (C5×SD16)⋊5C6, C4.14(D4×C15), C2.15(D4×C30), C12.63(C5×D4), C20.63(C3×D4), C10.78(C6×D4), C6.78(D4×C10), (C3×SD16)⋊5C10, C30.461(C2×D4), (C2×C30).131D4, (C5×M4(2))⋊5C6, C4.5(C22×C30), C22.5(D4×C15), (C15×SD16)⋊13C2, (D4×C15)⋊42C22, (C3×M4(2))⋊3C10, C20.48(C22×C6), (Q8×C15)⋊37C22, (C15×M4(2))⋊11C2, (C2×C60).440C22, C12.48(C22×C10), (C5×C4○D4)⋊11C6, (C3×C4○D4)⋊7C10, (C5×D4)⋊11(C2×C6), (C2×C4).7(C2×C30), (C5×Q8)⋊12(C2×C6), (C2×C6).24(C5×D4), (C15×C4○D4)⋊17C2, (C3×D4)⋊11(C2×C10), (C2×C20).69(C2×C6), (C3×Q8)⋊10(C2×C10), (C2×C10).25(C3×D4), (C2×C12).68(C2×C10), SmallGroup(480,941)

Series: Derived Chief Lower central Upper central

C1C4 — C15×C8⋊C22
C1C2C4C20C60D4×C15C15×D8 — C15×C8⋊C22
C1C2C4 — C15×C8⋊C22
C1C30C2×C60 — C15×C8⋊C22

Generators and relations for C15×C8⋊C22
 G = < a,b,c,d | a15=b8=c2=d2=1, ab=ba, ac=ca, ad=da, cbc=b3, dbd=b5, cd=dc >

Subgroups: 232 in 136 conjugacy classes, 80 normal (48 characteristic)
C1, C2, C2, C3, C4, C4, C22, C22, C5, C6, C6, C8, C2×C4, C2×C4, D4, D4, D4, Q8, C23, C10, C10, C12, C12, C2×C6, C2×C6, C15, M4(2), D8, SD16, C2×D4, C4○D4, C20, C20, C2×C10, C2×C10, C24, C2×C12, C2×C12, C3×D4, C3×D4, C3×D4, C3×Q8, C22×C6, C30, C30, C8⋊C22, C40, C2×C20, C2×C20, C5×D4, C5×D4, C5×D4, C5×Q8, C22×C10, C3×M4(2), C3×D8, C3×SD16, C6×D4, C3×C4○D4, C60, C60, C2×C30, C2×C30, C5×M4(2), C5×D8, C5×SD16, D4×C10, C5×C4○D4, C3×C8⋊C22, C120, C2×C60, C2×C60, D4×C15, D4×C15, D4×C15, Q8×C15, C22×C30, C5×C8⋊C22, C15×M4(2), C15×D8, C15×SD16, D4×C30, C15×C4○D4, C15×C8⋊C22
Quotients: C1, C2, C3, C22, C5, C6, D4, C23, C10, C2×C6, C15, C2×D4, C2×C10, C3×D4, C22×C6, C30, C8⋊C22, C5×D4, C22×C10, C6×D4, C2×C30, D4×C10, C3×C8⋊C22, D4×C15, C22×C30, C5×C8⋊C22, D4×C30, C15×C8⋊C22

Smallest permutation representation of C15×C8⋊C22
On 120 points
Generators in S120
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15)(16 17 18 19 20 21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72 73 74 75)(76 77 78 79 80 81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100 101 102 103 104 105)(106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)
(1 47 36 93 109 80 71 22)(2 48 37 94 110 81 72 23)(3 49 38 95 111 82 73 24)(4 50 39 96 112 83 74 25)(5 51 40 97 113 84 75 26)(6 52 41 98 114 85 61 27)(7 53 42 99 115 86 62 28)(8 54 43 100 116 87 63 29)(9 55 44 101 117 88 64 30)(10 56 45 102 118 89 65 16)(11 57 31 103 119 90 66 17)(12 58 32 104 120 76 67 18)(13 59 33 105 106 77 68 19)(14 60 34 91 107 78 69 20)(15 46 35 92 108 79 70 21)
(16 89)(17 90)(18 76)(19 77)(20 78)(21 79)(22 80)(23 81)(24 82)(25 83)(26 84)(27 85)(28 86)(29 87)(30 88)(31 66)(32 67)(33 68)(34 69)(35 70)(36 71)(37 72)(38 73)(39 74)(40 75)(41 61)(42 62)(43 63)(44 64)(45 65)(46 92)(47 93)(48 94)(49 95)(50 96)(51 97)(52 98)(53 99)(54 100)(55 101)(56 102)(57 103)(58 104)(59 105)(60 91)
(16 102)(17 103)(18 104)(19 105)(20 91)(21 92)(22 93)(23 94)(24 95)(25 96)(26 97)(27 98)(28 99)(29 100)(30 101)(46 79)(47 80)(48 81)(49 82)(50 83)(51 84)(52 85)(53 86)(54 87)(55 88)(56 89)(57 90)(58 76)(59 77)(60 78)

G:=sub<Sym(120)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,47,36,93,109,80,71,22)(2,48,37,94,110,81,72,23)(3,49,38,95,111,82,73,24)(4,50,39,96,112,83,74,25)(5,51,40,97,113,84,75,26)(6,52,41,98,114,85,61,27)(7,53,42,99,115,86,62,28)(8,54,43,100,116,87,63,29)(9,55,44,101,117,88,64,30)(10,56,45,102,118,89,65,16)(11,57,31,103,119,90,66,17)(12,58,32,104,120,76,67,18)(13,59,33,105,106,77,68,19)(14,60,34,91,107,78,69,20)(15,46,35,92,108,79,70,21), (16,89)(17,90)(18,76)(19,77)(20,78)(21,79)(22,80)(23,81)(24,82)(25,83)(26,84)(27,85)(28,86)(29,87)(30,88)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(41,61)(42,62)(43,63)(44,64)(45,65)(46,92)(47,93)(48,94)(49,95)(50,96)(51,97)(52,98)(53,99)(54,100)(55,101)(56,102)(57,103)(58,104)(59,105)(60,91), (16,102)(17,103)(18,104)(19,105)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,101)(46,79)(47,80)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,89)(57,90)(58,76)(59,77)(60,78)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75)(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105)(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120), (1,47,36,93,109,80,71,22)(2,48,37,94,110,81,72,23)(3,49,38,95,111,82,73,24)(4,50,39,96,112,83,74,25)(5,51,40,97,113,84,75,26)(6,52,41,98,114,85,61,27)(7,53,42,99,115,86,62,28)(8,54,43,100,116,87,63,29)(9,55,44,101,117,88,64,30)(10,56,45,102,118,89,65,16)(11,57,31,103,119,90,66,17)(12,58,32,104,120,76,67,18)(13,59,33,105,106,77,68,19)(14,60,34,91,107,78,69,20)(15,46,35,92,108,79,70,21), (16,89)(17,90)(18,76)(19,77)(20,78)(21,79)(22,80)(23,81)(24,82)(25,83)(26,84)(27,85)(28,86)(29,87)(30,88)(31,66)(32,67)(33,68)(34,69)(35,70)(36,71)(37,72)(38,73)(39,74)(40,75)(41,61)(42,62)(43,63)(44,64)(45,65)(46,92)(47,93)(48,94)(49,95)(50,96)(51,97)(52,98)(53,99)(54,100)(55,101)(56,102)(57,103)(58,104)(59,105)(60,91), (16,102)(17,103)(18,104)(19,105)(20,91)(21,92)(22,93)(23,94)(24,95)(25,96)(26,97)(27,98)(28,99)(29,100)(30,101)(46,79)(47,80)(48,81)(49,82)(50,83)(51,84)(52,85)(53,86)(54,87)(55,88)(56,89)(57,90)(58,76)(59,77)(60,78) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15),(16,17,18,19,20,21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72,73,74,75),(76,77,78,79,80,81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100,101,102,103,104,105),(106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)], [(1,47,36,93,109,80,71,22),(2,48,37,94,110,81,72,23),(3,49,38,95,111,82,73,24),(4,50,39,96,112,83,74,25),(5,51,40,97,113,84,75,26),(6,52,41,98,114,85,61,27),(7,53,42,99,115,86,62,28),(8,54,43,100,116,87,63,29),(9,55,44,101,117,88,64,30),(10,56,45,102,118,89,65,16),(11,57,31,103,119,90,66,17),(12,58,32,104,120,76,67,18),(13,59,33,105,106,77,68,19),(14,60,34,91,107,78,69,20),(15,46,35,92,108,79,70,21)], [(16,89),(17,90),(18,76),(19,77),(20,78),(21,79),(22,80),(23,81),(24,82),(25,83),(26,84),(27,85),(28,86),(29,87),(30,88),(31,66),(32,67),(33,68),(34,69),(35,70),(36,71),(37,72),(38,73),(39,74),(40,75),(41,61),(42,62),(43,63),(44,64),(45,65),(46,92),(47,93),(48,94),(49,95),(50,96),(51,97),(52,98),(53,99),(54,100),(55,101),(56,102),(57,103),(58,104),(59,105),(60,91)], [(16,102),(17,103),(18,104),(19,105),(20,91),(21,92),(22,93),(23,94),(24,95),(25,96),(26,97),(27,98),(28,99),(29,100),(30,101),(46,79),(47,80),(48,81),(49,82),(50,83),(51,84),(52,85),(53,86),(54,87),(55,88),(56,89),(57,90),(58,76),(59,77),(60,78)]])

165 conjugacy classes

class 1 2A2B2C2D2E3A3B4A4B4C5A5B5C5D6A6B6C6D6E···6J8A8B10A10B10C10D10E10F10G10H10I···10T12A12B12C12D12E12F15A···15H20A···20H20I20J20K20L24A24B24C24D30A···30H30I···30P30Q···30AN40A···40H60A···60P60Q···60X120A···120P
order12222233444555566666···688101010101010101010···1012121212121215···1520···20202020202424242430···3030···3030···3040···4060···6060···60120···120
size11244411224111111224···444111122224···42222441···12···2444444441···12···24···44···42···24···44···4

165 irreducible representations

dim111111111111111111111111222222224444
type+++++++++
imageC1C2C2C2C2C2C3C5C6C6C6C6C6C10C10C10C10C10C15C30C30C30C30C30D4D4C3×D4C3×D4C5×D4C5×D4D4×C15D4×C15C8⋊C22C3×C8⋊C22C5×C8⋊C22C15×C8⋊C22
kernelC15×C8⋊C22C15×M4(2)C15×D8C15×SD16D4×C30C15×C4○D4C5×C8⋊C22C3×C8⋊C22C5×M4(2)C5×D8C5×SD16D4×C10C5×C4○D4C3×M4(2)C3×D8C3×SD16C6×D4C3×C4○D4C8⋊C22M4(2)D8SD16C2×D4C4○D4C60C2×C30C20C2×C10C12C2×C6C4C22C15C5C3C1
# reps11221124244224884488161688112244881248

Matrix representation of C15×C8⋊C22 in GL4(𝔽241) generated by

24000
02400
00240
00024
,
240010
240001
240100
239001
,
101240
024010
0010
002240
,
100240
010240
002400
000240
G:=sub<GL(4,GF(241))| [24,0,0,0,0,24,0,0,0,0,24,0,0,0,0,24],[240,240,240,239,0,0,1,0,1,0,0,0,0,1,0,1],[1,0,0,0,0,240,0,0,1,1,1,2,240,0,0,240],[1,0,0,0,0,1,0,0,0,0,240,0,240,240,0,240] >;

C15×C8⋊C22 in GAP, Magma, Sage, TeX

C_{15}\times C_8\rtimes C_2^2
% in TeX

G:=Group("C15xC8:C2^2");
// GroupNames label

G:=SmallGroup(480,941);
// by ID

G=gap.SmallGroup(480,941);
# by ID

G:=PCGroup([7,-2,-2,-2,-3,-5,-2,-2,1709,5126,15125,7572,124]);
// Polycyclic

G:=Group<a,b,c,d|a^15=b^8=c^2=d^2=1,a*b=b*a,a*c=c*a,a*d=d*a,c*b*c=b^3,d*b*d=b^5,c*d=d*c>;
// generators/relations

׿
×
𝔽